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Probabilistic topic modeling has been applied in a variety of industrial applications. Training a high-quality

model usually requires a massive amount of data to provide comprehensive co-occurrence information for the

model to learn. However, industrial data such asmedical or financial records are often proprietary or sensitive,

which precludes uploading to data centers. Hence, training topic models in industrial scenarios using con-

ventional approaches faces a dilemma: A party (i.e., a company or institute) has to either tolerate data scarcity

or sacrifice data privacy. In this article, we propose a framework named Industrial Federated Topic Modeling

(iFTM), in which multiple parties collaboratively train a high-quality topic model by simultaneously allevi-

ating data scarcity and maintaining immunity to privacy adversaries. iFTM is inspired by federated learning,

supports two representative topic models (i.e., Latent Dirichlet Allocation and SentenceLDA) in industrial

applications, and consists of novel techniques such as private Metropolis-Hastings, topic-wise normaliza-

tion, and heterogeneous model integration. We conduct quantitative evaluations to verify the effectiveness

of iFTM and deploy iFTM in two real-life applications to demonstrate its utility. Experimental results verify

iFTM’s superiority over conventional topic modeling.
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1 INTRODUCTION

Probabilistic topic modeling has been successfully used in many industrial applications, from mil-
itary analysis [36] to web search log mining [6, 19, 20] to bioinformatics [1, 23, 31]. As training a
high-quality topic model for a specific application typically requires comprehensive data to pro-
vide sufficient co-occurrence information, relying on data collected from a single party faces the
challenge of data scarcity. Meanwhile, since these data are typically proprietary and sensitive, reg-
ulations such as the newly enforced European Union General Data Protection Regulation (GDPR)
[5, 37, 40] may preclude uploading them to data centers and being utilized in a centralized ap-
proach. These two critical problems pose new challenges to conventional topic modeling, which
we refer to as the state-of-the-art distributed architectures [30, 48, 49] for training topic models
on computer clusters within a data center.
To solve the above problems, a new probabilistic topic modeling paradigm simultaneously al-

leviates data scarcity and ensures that data privacy is urgently needed in the industry. However,
the vast discrepancy between the scenario of conventional topic modeling and that studied in this
article results in three challenging research issues. First, how to protect the privacy of training data
of each party from adversaries. Privacy is typically neglected in conventional topic modeling, and
anyone who can access computing nodes or monitor network communication can quickly get a
glimpse of the data of each party. New data regulations increasingly forbid such practice. Second,
how to reduce the communication cost between computing nodes. Conventional topic modeling
such as those deployed upon MapReduce [49] or ParameterServer [48] usually has a demanding
requirement of communication efficiency that is only satisfied by a data-center-grade network.
However, in the present problem, different parties may be located in different data centers and
connected by low bandwidth. Hence, it is infeasible to allow computing nodes to communicate
with each as before frequently. Third, how to handle the variety of data andmodels across different
parties. Conventional topic modeling relies upon the assumption that different computing nodes
store independent and identically distributed (i.i.d.) data and train the same topic model. However,
this requirement can hardly be met in the present problemwhere each party usually has highly un-
balanced data and trains heterogeneous topic models (i.e., topic models with different regularity).
Inspired by the concept of federated computation, which refers to a distributed architecture

that a master coordinates a fleet of parties to compute aggregated statistics of private data [17,
29], we propose a framework named Industrial Federated Topic Modeling (iFTM) that solves the
aforementioned problems in a principled approach. As shown in Figure 1, iFTM is composed of
two computational components: party computation and master computation. Party computation
provides a flexible mechanism for balancingmodel utility and data privacy. It seamlessly integrates
differential privacy with Markov Chain Monte Carlo (MCMC) [14] for both private and efficient
parameter inference. The local model of each party is encrypted by a topic-wise normalization
mechanism and transmitted to the master without leakage of critical information of the training
datasets. Master computation is responsible for integrating the transmitted local models into a
global one and formalizing necessary information for meta-learning in the next iteration. Notably,
master computation circumvents the rigid requirements such as frequent network communica-
tion and training the same topic model on every party, to achieve significantly lower communi-
cation cost and handle data that are not i.i.d.. In this article, we discuss the technical details of
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Fig. 1. The Industrial Federated Topic Modeling Framework: Party Computation ( 1© Private MCMC Sam-

pling and 2© Topic-wise Normalization) and Master Computation ( 3© Integrating Local Topic Models and

4© Composing New Local Topic Models).

iFTM through two representative topic models widely used in industry: Latent Dirichlet Alloca-
tion (LDA) [4] and SentenceLDA [22], which paves the way for training a broader scope of topics
models in the federated scenario. We evaluate iFTM in terms of quantitative metrics such as likeli-
hood and communication cost as well as two real-life applications. The contributions of this article
are summarized as follows:

• To the best of our knowledge, iFTM is the first framework that is specifically designed for
large-scale distributed topic modeling with a guarantee of privacy protection.

• iFTM pioneers new topic modeling paradigms such as allowing heterogeneous topic models
to be trained on data that are not i.i.d. across different parties.

• iFTM delicately avoids the demanding network communication that plagues conventional
topic modeling, making it the first topic modeling framework applicable in federated
scenarios.

• Quantitative evaluations and real-life applications demonstrate the necessity and effective-
ness of iFTM.

The rest of the article is organized as follows: We review the related work in Section 2. Then, we
discuss the technical details of iFTM in Section 3. We present the experimental results in Section 4
and finally conclude the article in Section 5.

2 RELATEDWORK

The present work is related to a broad range of literature. We review the most related works in
topic modeling, federated learning, and differential privacy, respectively.

2.1 Topic Modeling

Topic modeling has been intensively studied and widely used in industry for the past decade.
LDA and SentenceLDA play important roles in the industry. In this field, recent advancement
focuses on the design of new model structures and efficient inference methods under distributed
environments [30, 46, 48, 49]. Typical extensions of LDA include Supervised LDA [28], TOT [41],
Multifaceted TopicModel [39], and so on. However, in these conventional topicmodels, the issue of
privacy is typically neglected. A recent work [34] proposes a technique to privatize the parameters
of variational inference. However, this technique is based upon a single computing node and is not
straightforward to apply in distributed computing. Although privacy and distributed computing
are two critical factors determining the applicability of topic models in the industry, they have
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been studied independently in existing work, and integrating them in a unified framework is still
an open problem.

2.2 Federated Learning

While user-oriented topic modeling helps enhance the performance of many applications, user
data is exposed to algorithms, which raises concerns about data privacy and security. This kind
of dilemma happens in many real-world applications that need large-scale user data for training.
In practice, data is fragmented and isolated distributed. The scarcity of data resources encour-
ages researchers and engineers to explore approaches to collect and enlarge the dataset. Typically,
there are two types of strategies: directly gathering data frommultiple sources and collaboratively
training a joint model across different institutions [45].

However, the increasing concern of data privacy and security has become a significant obstacle
before applying these methods. For example, the European Union (EU) enforced the EU General
Data Protection Regulation (GDPR) [38] in 2018 strictly restricted the personal data usage of in-
stitutions. The US, China, and other countries/regions also published their bills and laws for data
protection, which means traditional methods of gathering data or collaborative learning may vio-
late such regulations. The Cyber Security Law and the General Principles of the Civil Law, enacted
in China, requires that data owners must not leak or tamper with the personal information that
they collect. Companies or organizations need to ensure that third-parties conducting data trans-
actions also follow legal data protection obligations.
Tomeet the legal requirements and satisfy users’ expectations of privacy protection, researchers

have proposed a novel machine learning paradigm, federated learning, which jointly conducts a
learning algorithm across different parties (i.e., institutions, users, etc.) [29, 45]. Federated learning
aims to give autonomy to each party in a collaborative union and leave the private information
inside each party. To achieve this goal, researchers have to address two issues: (1) the non-IID data
distribution on different parties and (2) privacy protection during collaboration.
For the first problem, Yang et al. [45] define three categories of data partitioned across different

parties, i.e.,

(1) Horizontal federated learning (HFL): The samples in different parties belong to different
identities with the feature from the same space. HFL is typically used in user-oriented ap-
plications, where the data are small and distributed onmassive user clients, such as mobile
applications. Hard et al. [17] and Leroy et al. [25] propose federated language modeling
and keyword spotting for mobile phones. Their methods preserve privacy via keeping
data locally.

(2) Vertical federated learning (VFL): The samples in different parties belong to the same iden-
tities with features from the same space, so these features can be virtually and vertically
joint together. VFL is suitable for leveraging knowledge across different industries [8]. In
this case, VFL helps complementation among different parties.

(3) Federated transfer learning (FTL): The sample is different in different parties, which com-
bines transfer learning [32] with federated learning. FTL tries to dig the potential knowl-
edge shared across parties even though there is no explicit alignment [27].

In terms of privacy and security protection, there are various technologies for different needs of
protection level. Instead of only keeping data locally and sharing learnedmodels, some researchers
apply differential privacy [9] to reduce the probability of sensitive information leaks [3, 13, 16, 18,
33, 42]. Moreover, secure multi-party computation techniques, such as homomorphic encryption
(HE) [35] and garbled circuit (GC) [47] are also used to encrypt the shared parameters or data.
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2.3 Differential Privacy

Differential privacy (DP) is defined on the probability of leaking individual information by
querying from a database. It quantitatively measures the risk of sniffing the output difference
of algorithms between two inputs that differ by one sample. If the difference is large, one can
detect individual privacy by constructing inputs. The formal definition of differential privacy is
as follows: A randomized algorithmM (X) is considered as (ε,δ )-differentially private if

Pr (M (X ∈ S)) ≤ eεPr (M (X′ ∈ S)) + δ (1)

for all S ⊂ Range(M) and for all adjacent datasets X,X′. The formula indicates that with a neg-
ligible probability, an attacker can sniff private information from the output of that randomized
algorithmM (X). Adjacent datasets and sensitivity are two major elements in a DP setting, which
capture the hardness of attacking this dataset (or model). The settings of DP are open, which
allows researchers to customize privacy definition and protection degree according to the specific
privacy requirement. There are many perturbation mechanisms to achieve a certain level of
privacy under a given sensitivity, among which the Gaussian mechanism and Laplace Mechanism
are mostly used. Laplace mechanism [10] provides ϵ-differential privacy, which adds Laplace
noise to the revealed data (i.e., parameters or query outputs of a released model) with the amount
of noise controlled by ϵ . Specifically, the L1 sensitivity Δh for function h is defined as:

Δh = maxX ,X ′ | |h(X ) − h(X ′ ) | |1 (2)

for all datasets X , X
′
differing in at most one element. The Laplace mechanism adds noise via:

ML (X ,h, ϵ ) = h(X ) + (Y1,Y2, . . . ,Yd ),

Yj ∼ Laplace (Δh/ϵ ),∀j ∈ {1, 2, . . . ,d }, (3)

where d is the dimensionality of h. TheML (X ,h, ϵ ) mechanism is ϵ-differentially private.
A model always combines with multiple DP mechanisms. The composition of DP mechanisms

will certainly accumulate the risk of leaking private information. The composition theorems [10]
provides arithmetical methods to compute the consequence of composing multiple mechanisms.
There are two major composition theories:

• Sequential composition: supposeMj (X), j = 1, . . . , l , are (εj )-differentially private, then the
combination of these algorithmsX→ (M1 (X), . . . ,Ml (X)) is (

∑
j εj )-differentially private.

In a special case, when all the Mj are homogeneous, the combination yields (kε,kδ )-
differentially private.

• Parallel composition: Let Xi be arbitrary disjoint subsets of the input X, and Mj (Xj ), j =
1, . . . , l , are (εj )-differentially private, then the combination of these algorithms X→
(M1 (X1), . . . ,Ml (Xl)) satisfies (maxj εj )-differentially private.

Notably, when output is perturbed, any deterministic post-processing on it does not affect is
differential privacy loss [10]. We leverage this property to speed up the sampling in our work.

3 THE IFTM FRAMEWORK

We discuss iFTM based upon two topic models widely used in industry: LDA and SentenceLDA.
The techniques discussed in this section pave the way for designing similar algorithms for other
topic models. To facilitate the discussion thereafter, we list the notations that will be used in this
article in Table 1. We first discuss the party computation in Section 3.1. Then, we discuss how the
master computation works in Section 3.2 and finally present the workflow of iFTM in Section 3.3.
Before diving into the details of iFTM, we first highlight the difference between LDA and Sen-

tenceLDA, whose graphical models are illustrated in Figure 2. In the generative process of LDA,

ACM Transactions on Intelligent Systems and Technology, Vol. 12, No. 1, Article 2. Publication date: January 2021.



2:6 D. Jiang et al.

Table 1. Notations for iFTM

Notation Meaning

D Size of documents
K Number of topics
V Size of vocabulary
Φ Word distributions of topics
ϕk Word distribution of topic k
Θ Topic distributions of documents
θd Topic distributions of document d
w Words vector of a document
wdi ith word in document d
z Topic assignment vector of a document
zdi Topic assignment of ith in document d
z−di Topic assignment vector of document

d except the ith word
k Topic index
α Dirichlet prior vector for θ
β Dirichlet prior vector for φ

CDK
dk

Number of words or sentences assigned to topic

k in document d
CKW
kw

Number of wordw assigned to topic k
CKW
k · Array with each element indicating the number

of the corresponding word assigned to topic k
M Global topic model
M∗ Updated global topic model
Mp Party p’s local topic model

Fig. 2. Graphical models of LDA and SentenceLDA.

each word is generated by its corresponding topic. However, in SentenceLDA, the words in the
same sentence are constrained to be generated by the same topic. It is worth noting that the gen-
erative assumption of SentenceLDA is better fit for text written in natural language, since the
semantic granularity of topics is typically coarser than that of the sentence.

3.1 Party Computation

Each party is the workhorse for training its local topic model. We now discuss several novel mech-
anisms of party computation to protect the privacy of data stored on each party. We start with
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describing a private Gibbs sampling algorithm in Section 3.1.1 and Section 3.1.2 and then adapt
it to a private Metropolis Hastings algorithm that enjoys much higher efficiency in Section 3.1.3
and 3.1.4. Finally, we discuss how to avoid revealing the original word distribution of the local
model in Section 3.1.5.

3.1.1 Private Gibbs Sampling of LDA. Gibbs sampling is widely used for parameter inference
of topic models [15, 22, 41]. Let the words w be the training data from a party and z be the latent
topics assigned to w. According to the generative assumption of LDA [4], the joint probability is
as follows:

P (w, z,Θ,Φ|α , β ) = P (Θ|α )P (Φ|β )P (z|Θ)P (w|z,Φ), (4)

where Θ are the topic distributions of documents, Φ are the word distributions of topics, α and β
are hyperparameters that are usually fixed to constant values [15]. The Gibbs update of a topic zdi
that corresponds to the ith wordw in document d is defined as follows:

P (zdi |z−di ,w,α , β ) ∝ P (zdi |θd )P (wdi |zdi ,Φ), (5)

where z−di are the latent topics except the one assigned for the ith word in d . In Equation (5), only
the P (wdi |zdi ,Φ) component needs to access the original data. Hence, we integrate out θd and the
partially collapsed Gibbs update is as follows:

P (zdi |z−di ,w,α , β ) ∝
(CDK

dzdi
+ α )∑

k ′ (C
DK
dk ′ + α )

P (wdi |zdi ,Φ), (6)

where CDK
dzdi

is the number of words assigned to topic zdi in document d . Due to conjugacy of β

and Φ, the update formula for ϕk is as follows:

P (ϕk |w, z, β ) ∼ Dirichlet
(
CKW
k · + β

)
, (7)

whereCKW
kw

is the number ofw assigned to topick andCKW
k · is an arraywith one element indicating

the number of the corresponding word assigned to topic k . We write P (w |zdi ,Φ) in the exponential
family form:

P (wdi |zdi ,Φ) = ϕzdiwdi
= exp �

�
∑
w ′

ndiw ′ logϕzdiw ′
�
�
, (8)

where ndiw ′ = I[w ′ = wdi ]. Since the sampling algorithm interacts with the corpus only by the
sufficient statistics for exp(

∑
w ′ ndiw ′ logϕzdiw ′ ), we privatize the sufficient statistics (i.e., ndiw ′)

via the Laplace mechanism, resulting in privatized counts n̂diw ′ :

n̂diw ′ = ndiw ′ + Y . (9)

We apply the “include/exclude” version of differential privacy, in which differing by a single entry
refers to the inclusion or exclusion of that entry in the corpus. Since each counter ndiw ′ is a sum
of indicator vectors, it has L1 sensitivity of 1. We have:

Y ∼ Laplace (1/ε ). (10)

The above formula means randomly drawing a sample from the Laplace distribution with the loca-
tion parameter 0 and scale parameter 1/ε . Since the scale parameter ε controls how much “noise”
we add to the training data, in our experiments, we set its value of 8.0, 9.0, 10.0, and 11.0 to see
the performance of our algorithm. Note that we only need to compute the privatized count n̂diw ′
once, and it works as a proxy of the original coun in the following sampling algorithms. Hence,
no original data is exposed to the sampling algorithm. According to References [43] and [11], it
is easy to prove that such mechanism is ε-differentially private. After applying the Laplace mech-
anism, n̂di · is no longer sparse, and the complexity of Gibbs sampling via Equation (6) increases
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from O (K ) per word to O (KV ) per word, where K is the number of topics and V is the size of the
vocabulary. It is easy to see that the private Gibbs sampling algorithm is unrealistically inefficient
for real-life applications where datasets are voluminous.

ALGORITHM 1: Private Metropolis Hastings for LDA

input: local training data

output: local topic modelMp

1 if it is the first global iteration then

2 for each document d in local training data do

3 for each wordwi in d do

4 privatize ndi · according to Equation (9) and threshold by τ

5 end

6 end

7 randomly assign a topic to each word in local corpus

8 else

9 build a word-topic alias table based on the new local model from the master

10 sample a topic for each word in local corpus according to the above word-topic alias table

11 for each local iteration do

12 build a doc-topic alias table according to Equation (17)

13 build a word-topic alias table according to Equation (20)

14 for each document d in local corpus do

15 for each wordwdi in d do

16 propose a topic za with the doc-topic alias table;

17 update zi according to za and Equation (19);

18 propose a topic zb with the word-topic alias table;

19 update zi according to zb and Equation (22);

20 end

21 end

22 sample Φ according to Equation (7)

23 end

24 compose local modelMp according to CKW
k ·

3.1.2 Private Gibbs Sampling of SentenceLDA. Similar to LDA, the joint probability for Sen-
tenceLDA [2] is as follows:

P (w, z,Θ,Φ|α , β ) = P (Θ|α )P (Φ|β )P (z|Θ)P (w|z,Φ), (11)

where Θ are the topic distributions of documents, Φ are the word distributions of topics, α and β
are hyperparameters that are usually fixed to constant values [15]. Different from LDA, the Gibbs
update of a topic zds that corresponds to the sth sentence in document d is defined as follows:

P (zds |z−ds ,w,α , β ) ∝ P (zds |θd )P (wds |zds ,Φ), (12)

where z−ds are the latent topics except the one assigned for the sth sentence in d . In Equation (12),
only the P (wds |zds ,Φ) component needs to access the original data. Hence, we integrate out θd
and the partially collapsed Gibbs update is as follows:

P (zds |z−ds ,w,α , β ) ∝
(CDK

dzds
+ α )∑

k ′ (C
DK
dk ′ + α )

P (wds |zds ,Φ), (13)
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where CDK
dzds

is the number of sentences assigned to topic zds in document d . Due to conjugacy of

β and Φ, the update formula for ϕk is as follows:

P (ϕk |w, z, β ) ∼ Dirichlet
(
CKW
k · + β

)
, (14)

where CKW
kw

is the number of word w assigned to topic k and CKW
k · is an array with one element

indicating the number of the corresponding word assigned to topic k . We write P (w|zds ,Φ) in the
exponential family form:

P (wds |zds ,Φ) ≈
∏

w ∈wds

ϕzdsw =
∏

w ∈wds

exp �
�
∑
w ′

ndsw ′ logϕzdsw ′
�
�
, (15)

where ndsw ′ = I[w ′ = w]. Similar to the Private Gibbs Sampling algorithm for LDA, the sam-
pling algorithm for SentenceLDA also interacts with the corpus only by the sufficient statistics
for exp(

∑
w ′ ndsw ′ logϕzdsw ′ ), and we privatize the sufficient statistics (i.e., ndsw ′) via the Laplace

mechanism, resulting in privatized counts n̂dsw ′ :

n̂dsw ′ = ndsw ′ + Y . (16)

3.1.3 Private Metropolis-Hastings of LDA. To improve the efficiency of MCMC sampling and
make it applicable to the massive dataset, we propose the private Metropolis-Hastings (MH) for
LDA, and the algorithm is depicted in Algorithm 1.
Being the same as traditional MH, the private MH algorithm has two deliberately designed

proposals for proposing a topic candidate for a word. The first proposal is the doc-topic proposal:

Ωz
d =

(CDK
dz
+ α )∑

k ′ (C
DK
dk ′ + α )

, (17)

where Ωz
d
can be straightforwardly interpreted as the “strength” of the relation between z and d .

For doc-topic proposal, the acceptance probability of topic transition from z to z ′ is:

min
⎧⎪⎨⎪⎩
1,
P (z ′|z−di ,w,α , β )Ωz

d

P (z |z−di ,w,α , β )Ωz′
d

⎫⎪⎬⎪⎭
. (18)

By replacing the component P (z ′|z−di ,w,α , β ) and P (z |z−di ,w,α , β ) with Equation (6), the above
acceptance probability is updated as follows:

min
⎧⎪⎨⎪⎩
1,

(ĈDK
dz′ + α )P̂ (w |z ′,Φ)(CDK

dz
+ α )

(ĈDK
dz
+ α )P̂ (w |z,Φ)(CDK

dz′ + α )

⎫⎪⎬⎪⎭
, (19)

where the hat notation means that the statistics ofwdi is removed from the corresponding value.
The second one is word-topic proposal, which is defined as:

Ωz
w =

CKW
zw + β∑

w ′ (C
KW
zw ′ + β )

, (20)

where Ωz
w can be straightforwardly interpreted as the “strength” of relation between topic z and

w .
For word-topic proposal, the acceptance probability of topic transition from z to z ′ is:

min

{
1,
P (z ′|z−di ,w,α , β )Ωz

w

P (z |z−di ,w,α , β )Ωz′
w

}
. (21)
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Fig. 3. A toy example of building alias table.

By replacing the component P (z ′ |z−di ,w,α , β ) and P (z |z−di ,w,α , β ) with Equation (6), the above
acceptance probability is updated as follows:

min
⎧⎪⎨⎪⎩
1,

(ĈDK
dz′ + α )P̂ (w |z ′,Φ)(CKW

zw + β ) (
∑
w ′ (C

KW
z′w ′ + β ))

(ĈDK
dz
+ α )P̂ (w |z,Φ)(CKW

z′w + β ) (
∑
w ′ (C

KW
zw ′ + β ))

⎫⎪⎬⎪⎭
, (22)

where the hat notation means that the statistics ofwdi is removed from the corresponding value.
The strategies for improving the sampling efficiency of private MH are twofold:

(1) Improving the sampling efficiency of the proposals of Equation (17) and Equation (20). To
achieve this goal, we build a doc-topic alias table and a word-topic alias table for the two
proposals, respectively, according to the alias method in Reference [48]. The key idea of
the alias method is the construction of the alias table, which is illustrated by an example in
Figure 3. During the construction process, the algorithm keeps moving “overfull” entries
(entry one in the example) to the “underfull” entries (entry four in the example) in the
table to make all the entries “exactly full.” In the meantime, it guarantees each entry has
at most two kinds of entry index. With alias method, the original non-uniform sampling
process is transformed into a uniform one, and the time complexity of sampling a topic
from a proposal is reduced from O (K ) per word to O (1) per word. When sampling a new
topic for a word, the doc-topic proposal and word-topic proposal are sequentially applied
to achieve a high mixing rate.

(2) Reducing the computational cost of calculating the acceptance probabilities of Equa-
tion (19) and Equation (22). The bottleneck of calculating Equation (19) and Equation (22)
lies in the component P (w |zdi ,Φ). We utilize a threshold τ to sparsify the vector n̂di ·. As
n̂diwi

represents the count information, we clap n̂diwi
to zero if n̂diwi

≤ τ .

By collectively applying the above two strategies, the amortized time complexity of sampling a
topic for a word by private MH can be reduced to O ( V

2eτ ε ). According to Reference [10], applying
deterministic post-processing to a ε-differentially privatemechanism is still ε-differentially private.
Therefore, the above operation does not affect the privacy guarantee.

3.1.4 Private Metropolis Hastings of SentenceLDA. Similar to private MH for LDA depicted in
Section 3.1.3, our propose private MH algorithm for SentenceLDA also has two proposals for
proposing a topic candidate for a word. The first proposal is the doc-topic proposal:

Ωz
d =

(CDK
dz
+ α )∑

k ′ (C
DK
dk ′ + α )

, (23)

where Ωz
d
can be straightforwardly interpreted as the “strength” of the relation between z and d .
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ALGORITHM 2: Private Metropolis Hastings for SentenceLDA

input: local training data

output: local topic modelMp

1 if it is the first global iteration then

2 for each document d in local training data do

3 for each wordwi in d do

4 privatize ndi · according to Equation (16) and threshold by τ

5 end

6 end

7 randomly assign a topic to each word in local corpus

8 else

9 build a word-topic alias table based on the new local model from the master

10 sample a topic for each word in local corpus according to the above word-topic alias table

11 for each local iteration do

12 build a doc-topic alias table according to Equation (23)

13 build a word-topic alias table according to Equation (25)

14 for each document d in local corpus do

15 propose a sentence-topic zs with the doc-topic alias table;

16 update zi according to zs and Equation (27);

17 for each wordwdsi in sentence s do
18 propose a topic zsw with the word-topic alias table;

19 update zsi according to zsw and Equation (28);

20 end

21 end

22 sample Φ according to Equation (14)

23 end

24 compose local modelMp according to CKW
k ·

For doc-topic proposal, the acceptance probability of topic transition from z to z ′ is:

min
⎧⎪⎨⎪⎩
1,
P (z ′|z−di ,w,α , β )Ωz

d

P (z |z−di ,w,α , β )Ωz′
d

⎫⎪⎬⎪⎭
. (24)

The second one is word-topic proposal, which is defined as:

Ωz
w =

CKW
zw + β∑

w ′ (C
KW
zw ′ + β )

, (25)

where Ωz
w can be straightforwardly interpreted as the “strength” of relation between topic z and

w .
For word-topic proposal, the acceptance probability of topic transition from z to z ′ is:

min

{
1,
P (z ′|z−di ,w,α , β )Ωz

w

P (z |z−di ,w,α , β )Ωz′
w

}
. (26)

By replacing the component P (z ′|z−di ,w,α , β ) and P (z |z−di ,w,α , β ) with Equation (13), the above
two acceptance probabilities (Equation (24) and Equation (26)) are updated as follows:

min
⎧⎪⎨⎪⎩
1,

(ĈDK
dz′ + α )P̂ (w |z ′,Φ)(CDK

dz
+ α )

(ĈDK
dz
+ α )P̂ (w |z,Φ)(CDK

dz′ + α )

⎫⎪⎬⎪⎭
, (27)
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Fig. 4. A Toy example of topic-wise normalization. Hyperparameters are neglected in this example for

simplicity.

where the hat notation means that the statistics of wdi is removed from the corresponding value,
and

min
⎧⎪⎨⎪⎩
1,

(ĈDK
dz′ + α )P̂ (w |z ′,Φ)(CKW

zw + β ) (
∑
w ′ (C

KW
z′w ′ + β ))

(ĈDK
dz
+ α )P̂ (w |z,Φ)(CKW

z′w + β ) (
∑
w ′ (C

KW
zw ′ + β ))

⎫⎪⎬⎪⎭
, (28)

where the hat notation means that the statistics ofwdi are removed from the corresponding value.

3.1.5 Topic-wise Normalization. As for either LDA or SentenceLDA, the local model (i.e., the
result of Algorithm 1 or Algorithm 2) of a party p can be represented as a word-topic matrixMp ,
in which each cell stores the frequency count of the corresponding word and topic. The informa-
tion inMp should be transmitted to the master through network communication. As shown in
Figure 4, transmittingMp exposes word distribution of the training data on p, since some impor-
tant information may be recovered byMp and deliberately designed language models. To solve
this problem, we conduct topic-wise normalization and obtain the normalized word-topic matrix

M̂p , which is transmitted to the master. AsMp and M̂p result in exactly the same alias tables

used in Algorithm 1, M̂p can be considered as the result of a lossless encryption mechanism,
which protects the original word distribution of the training data on p.

3.2 Master Computation

Since the formats of Φ in LDA and SentenceLDA are the same, their corresponding master compu-
tations are the same as well. The duties of the master are twofold: integrating the local models from
different parties and composing a new local model for each party. We first discuss how to integrate
heterogeneous local topic models in Section 3.2.1. Then, we discuss the approach of composing a
new local topic model for each party in Section 3.2.2. It is worth noting that master computation
effectively handles topic models with different regularities and therefore is suitable for scenarios
where data are not i.i.d. across parties.

3.2.1 Integrating Local Topic Models. Since the data of different parties are not necessarily i.i.d.,
the local models from different parties may contain different amounts of topics. The master is re-
sponsible for integrating these heterogeneous topic models.To compose a global modelM∗ based
on the topics in local models, we rely on Weighted Jaccard Similarity to calculate the similarity
between topics and merge the similar ones. The similarity between two topics zi and zj is defined
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as:

ρ (zi , zj ) =

∑m
l=1 min(pziwl

,p
zj
wl
)∑m

l=1 max(pziwl
,p

zj
wl
) +
∑T
m+1 p

zi
wl
+
∑T
l=m+1 p

zj
wl

=

∑m
l=1 min(pziwl

,p
zj
wl
)∑T

l=1 p
zi
wl
+
∑T
l=1 p

zj
wl
−∑m

l=1 min(pziwl
,p

zj
wl
)
,

(29)

where Pzi = (pziw1
,pziw2
, . . . ,pziwm

,pziwm+1
, . . . ,pziwL

) and Pzj = (p
zj
w1
,p

zj
w2
, . . . ,p

zj
wm
,p

zj
wm+1
, . . . ,p

zj
wL

) are
vectors representing the top-L words distribution of topic zi and topic zj .m (0 ≤ m ≤ L) indicates
the count of common words in their top-L words. Two topics are considered as redundant if the
similarity ρ (zi , zj ) is beyond the threshold ξ . The threshold ρ (zi , zj ) is set empirically based on
our experience in constructing high quality topic models.
Based on the above similarity metric, we detail the mechanism of integrating local models in Al-

gorithm 3. The algorithm first concatenates two topic models (Line 2). Then it finds the redundant
topic sets based on the Union-Find [12] algorithm (Line 2∼11). For example, if (z1, z2) and (z2, z3)
are considered as redundant based on Equation (29), {z1, z2, z3} will be taken as a disjoint topic
set. For each topic set, we then merge the topics in the set to get the representative distribution
(Lines 12∼16) by adding each topic distribution sequentially and do the normalization. (In this case,

the normalized distribution w1 �z1+w2 �z2+w3 �z3
w1+w2+w3

is chosen with �z1 , �z2 and �z3 removed fromMB .) Since

the data of different parties are highly unbalanced, we assign different weights wi to the topics
based on the data amount ni of different parties. Finally, we can obtain the global topic modelM∗
(Line 18).

ALGORITHM 3: Integrating Local Topic Models

input: global topic modelM, local topic modelMp .

output: updated global topic ModelM∗.
1 begin

2 concatenateM andMp intoMB ;

3 redundant topics R = {}
4 for each topic zi inMB do

5 for each topic zj (j > i) inMB do

6 calculate ρ (zi , zj ) with Equation (29);

7 if ρ (zi , zj ) ≥ ξ then

8 Add (zi , zj ) into R
9 end

10 end

11 end

12 for each set s in Union-Find(R) do
13 for each topic zsi (i > 1) in s do

14 addwsi �zsi to �zs1, remove �zsi fromMB ;

15 end

16 normalize distribution �zsi ;

17 end

18 M∗ =MB

19 end

20 returnM∗;
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3.2.2 Composing New Local Topic Models. Since the global topic model M∗ is large and com-
prehensive, some topics inM∗ are irrelevant to the data of certain parties. Hence, it is unnecessary
to push all the information in M∗ to each party. To effectively reduce the communication cost,
we compose a new local model that is compact enough to be pushed to the corresponding party.
To take full advantage of the global model to facilitate local training, we employ meta-learning1

[26] to transfer meta-level knowledge (i.e., the topics ofM∗) as high-quality initialization for next-

iteration local training. Specifically, we scan each topic zp in M̂p , choose the most similar topic z

from the global topic modelM∗, replace zp with z in the new local topic modelM
′
p , and push it to

p. The algorithm of composing new local models is presented in Algorithm 4.

ALGORITHM 4: Composing New Local Topic Models

input: global topic modelM∗, local topic model M̂p

output: new local topic modelM ′p .
1 begin

2 for each topic zp in M̂p do

3 z = argmaxz∈M∗ ρ (z, zp );
4 if ρ (z, zp ) ≥ ξ then

5 replace zp with z intoM ′p ;
6 end

7 remove z fromM∗;
8 end

9 end

10 returnM ′p ;

3.3 iFTM Workflow

The workflow of iFTM is presented in Algorithm 5. For each global iteration, during the party
computation stage, each party trains a local topic model and pushes the local topic model to the
master. During the master computation stage, the master sequentially merges all local topic mod-
els, maintains a global topic model M∗ according to Algorithm 3, and composes and pushes new
local models for each party according to Algorithm 4. The whole process repeats for a predefined
number of global iterations. We will show later that few global iterations are sufficient to obtain
a good global topic modelM∗. The low synchronization frequency improves iFTM’s to low band-
width and network failures, which are more common in wide area networks than in data centers.

4 EXPERIMENTS

In this section, we evaluate the performance of iFTM in terms of both quantitative metrics and
applications. In Section 4.1, we describe the experimental setup. In Section 4.2, we demonstrate
the effectiveness of iFTM in alleviating data scarcity. In Section 4.3, we demonstrate the utility of
iFTM in terms of different parameter settings. In Section 4.4, we gauge the communication cost
of iFTM. Finally, we show the necessity and the promising performance of iFTM through real-life
applications in Section 4.5 and Section 4.6.

1Meta-learning, also named learning to learn, is previously utilized in a supervised learning scenario. Meta-learning nor-

mally includes learning at two levels: higher-level learning to gain meta-knowledge and lower-level learning for new tasks

directed by meta-knowledge [26].
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Fig. 5. Performance ofdata scarcity alleviation.

ALGORITHM 5: iFTM Workflow

1 for each global iteration do

2 for each client p do

3 train local topic model

4 push local topic model M̂p to master

5 end

6 integrate local topic models and obtain the global topic model M∗ according to Algorithm 3

7 for each client p do

8 compose new local topic models for p push new local topic modelM ′p to p

9 end

10 end

11 return the global topic modelM∗

4.1 Experimental Setup

We assume that there are three parties denoted by P1, P2, and P3, whose data are neither balanced
nor i.i.d. Specifically, P1, P2, and P3 store 29,723, 59,445, and 89,169 documents, respectively. A
corpus containing other 29,700 documents is used as the testing data. LDA is trained through the
LightLDA2 toolkit and SentenceLDA is analogously trained. The number of topics has been tuned
for each party to make them strong baselines.

4.2 Data Scarcity Alleviation

One major motivation of iFTM is to alleviate the data scarcity problem faced by each party. Hence,
one important question is whether the model trained by iFTM is better than those trained by a
single party relying on its data.
Figure 5 shows the comparison of the two topic models trained by iFTM and different parties in

terms of the log-likelihood of testing data. We observe that harnessing more data usually results in
better LDA models. By collectively utilizing data from all parties, iFTM achieves the highest likeli-
hood. For example, iFTM-11 (i.e., iFTM with ε = 11 and τ = 0.2) demonstrate the log-likelihood of
−2.74 × 107 while the best LDAmodel trained by a single party is the one from P3 and only achieves
a log-likelihood of −3.03 × 107. Similar to LDA, more data usually results in better SentenceLDA

2https://github.com/Microsoft/LightLDA.
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Fig. 6. Performance of privacy protection.

models. By using the data from all parties, the SentenceLDA trained by iFTM achieves the highest
likelihood. Similar results can be observed for both LDA and SentenceLDA with other settings
of ε and τ . The result indicates that iFTM is effective in alleviating data scarcity and generates
high-quality topic models that cannot be obtained based upon a single party’s data.

4.3 Privacy Protection

The performance of iFTMwith different ε reflects the utility of iFTM after different levels of privacy
protection.
Figure 6(a) shows the performance of LDA trained by iFTMwith different ε (i.e., the scale param-

eter for Laplace distribution) and τ (i.e., the threshold for sparsifying vector n̂di ·). As ε increases,
LDA trained by iFTM usually achieves a higher likelihood of the testing data. For example, ε = 8
and τ = 0.2 achieve a log-likelihood of −4.59 × 107. When ε increases to 11, iFTM achieves a log-
likelihood of −2.74 × 107. This observation is quite straightforward, since ε determines how much
“noise” we add to the training data. In contrast, the effect of τ is more complicated, since it si-
multaneously affects the “noise” and the original data. When the “noise” is relatively moderate
(e.g., ε = 11), a slightly higher τ (e.g., τ = 0.2) will clap most of the noisy elements in n̂di · to zero
and results in models with higher likelihood on testing data. Figure 6(b) shows the performance
of SentenceLDA trained by iFTM. As ε increases, SentenceLDA trained by iFTM achieves a higher
likelihood of the testing data. This observation is the same as LDA, since ε determines the level of
“noise” we inject to training data. As for τ , when the “noise” is moderate (e.g., ε = 11), a slightly
higher τ (e.g., τ = 0.2) claps most of the noisy elements in n̂di · to zero and results in better Sen-
tenceLDA model. Empirically, for both LDA and SentenceLDA, τ = 0.2 demonstrates a fairly good
performance with moderate noise, and we utilize it by default in iFTM. As LDA and SentenceLDA
differ by the prior distribution of word-topic sampling, the performance consistency of LDA and
SentenceLDA indicates that the effect of our privacy protection is limited in sampling.

4.4 Communication Cost

Figure 7(a) presents the communication costs of LDA trained by conventional topic modeling
and iFTM with different ε . The baselines conventional topic modeling trained by LightLDA on
a dataset consisting of the training data from P1, P2, and P3. We observe that iFTM converges
quickly within several rounds of communication, while conventional topic modeling demonstrates
the much slower speed of convergence. iFTM with higher ε demonstrates superior performance
in terms of model quality and communication efficiency. When ε is lower than 9, the final model
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Fig. 7. Likelihood versus communication.

of iFTM is slightly worse than conventional topic modeling. Conventional topic modeling usually
needs more than 300 rounds of communications to achieve the likelihood that can be achieved
by iFTM in less than 5 rounds. These results verify the superiority of iFTM in a low-bandwidth
environment. Another interesting observation is that introducing moderate noise is beneficial for
improving the model’s quality under training. When ε is set to a value larger than 8, the models
trained by iFTM achieve a higher likelihood than that trained by conventional topic modeling on
original data. Figure 7(b) presents the communication costs of SentenceLDA trained by conven-
tional topic modeling and iFTM with different ε . Similar to the case of LDA, the SentenceLDA
model trained by iFTM converges quickly within several rounds of communication, and this con-
vergence rate is much faster than its conventional counterparts. The SentenceLDA model trained
by iFTM with higher ε demonstrates superior performance in terms of model quality and commu-
nication efficiency. These results again verify the superiority of iFTM in a low-bandwidth environ-
ment. To shed light on how iFTM works when the number of parties increases, we re-allocate the
documents from P1, P2, and P3 to four parties P ′1, P

′
2, P

′
3, and P

′
4, which store 28,000, 57,000, 80,000

and 13,337 documents, respectively. The parameter settings of the four-party scenario is exactly
the same as the three-party scenario. We find that with more parties, the framework needs about
15 rounds to generate a fairly good topic model, showing that the communication cost inevitably
increases as more parties involved. However, such communication cost is still much lower than
that caused by using ParameterServer in conventional topic modeling.

4.5 iFTM in Automatic Speech Recognition

Topic models are known for effectively improving the performance of Automatic Speech Recog-
nition (ASR) systems by providing richer contextual information for the language model (LM)
component in ASR [7, 44]. Specifically, topic models are utilized to calculate the probability of
seeing a word given the context:

PTM (w |C ) =
∑
z

P (w |z)P (z |C ), (30)

where z is the latent topic, P (w |z) is word probability given the topic, and P (z |C ) is topic proba-
bility given the context C . Comparing with the traditional backoff n-gram language models, such
topic-based approach is able to predict word probability based on much longer history and richer
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Fig. 8. The pipeline of applying topic model in ASR.

semantic information. In practice, we conduct a linear interpolation between the traditional back-
off n-gram language model and that produced by Equation (30) to generate the adapted language
model P (w |C ):

P (w |C ) = λPTM (w |C ) + (1 − λ)PLM (w |C ), (31)

where PLM (w |C ) is the probability given by the traditional backoff n-gram language model; λ is
a tradeoff parameter and set empirically to 0.1 in our experiments. The pipeline of applying topic
models in ASR is illustrated in Figure 8.
The premise of the above approach is to train a high-quality topic model. However, since the

transcripts of audio recordings are private and highly sensitive, it is impossible to train a compre-
hensive topic model by conventional approach, and we resort to iFTM to solve this problem. In our
experiment, three parties are involved. Party P1 has the transcript corresponding to 100-hour audio
recording, P2 and P3 have the transcripts of 50-hour audio recording, respectively. We train topic
models for each party with the conventional topic modeling and train the iFTM model according
to those discussed in Section 3.
As a testbed, a full-fledged ASR system is trained using the Kaldi toolkit.3 We investigate

whether introducing topic information into the language model component of the ASR system can
improve its performance. The topic information is utilized in the same way as the Re-Decoding
mechanism described in Reference [44]. The performances of the ASR system with different lan-
guage model components are evaluated by the standard metric Word Error Rate (WER) [24]. The
lower the WER, the better the performance of the ASR system. A dataset of 10-hour audio record-
ings is used for testing.
The experimental results are shown in Table 2. We observe that both LDA and SentenceLDA are

effective in reducing WER, but the models trained on larger data are of higher quality. Even with
the perturbation caused by privacy protection, iFTM still achieves the best performance in terms of
reducing WER, since harnessing more data significantly increases the quality of the topic model.
Besides, SentenceLDA consistently outperforms conventional LDA. This evaluation verifies our
assumption that iFTM can solve the problems plaguing real-life applications and improve their
performance to a level that can not be achieved before.

4.6 iFTM in Document Classification

Document classification is a critical task in natural language processing. The topic distribution
can be considered as a semantic representation of the document. In this experiment, the 100-
dimensional topic distribution of each document is utilized as extra features for the downstream
classifier support vector machine (SVM). Each party has 5,000 documents for training and we

3http://kaldi-asr.org/.
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Table 2. Introducing LDA and SentenceLDA into ASR

Models WER
ASR without Topic Model 33.18%

ASR with LDA trained on P1 31.40%
ASR with LDA trained on P2 32.32%
ASR with LDA trained on P3 33.04%

ASR with FTM-LDA 30.06%
ASR with SentenceLDA trained on P1 30.98%
ASR with SentenceLDA trained on P2 32.07%
ASR with SentenceLDA trained on P3 32.99%

ASR with FTM-SentenceLDA 30.01%

Table 3. Introducing LDA and SentenceLDA into the Document

Classifier

Models Precision
Classification without Topic Model 75.67%

Classification with LDA trained on P1 78.45%
Classification with LDA trained on P2 79.34%
Classification with LDA trained on P3 76.87%

Classification with FTM-LDA 80.56%
Classification with SentenceLDA trained on P1 79.65%
Classification with SentenceLDA trained on P2 79.12%
Classification with SentenceLDA trained on P3 77.34%

Classification with FTM-SentenceLDA 81.03%

utilizes another 2,000 documents for testing. Each document is graded by human annotators with
four categories. We compare different settings in terms of precision.
The experimental result is shown in Table 3. We find that the topic feature is effective for article

quality evaluation and effective in boosting the downstream classifier’s performance. Similar to
the experimental results in ASR, more data usually results in better topic models and hence better
classification performance. We further observe that SentenceLDA typically performs better than
LDA, showing that the document’s latent structure is critical for effective topic representation and
demonstrates better classification performance. This application unequivocally verifies the value
of iFTM in industrial scenarios.

5 CONCLUSION

In this article, we propose a novel framework named Federated Industrial Topic Modeling (iFTM)
to solve two critical problems faced by industrial topic modeling: data scarcity and data privacy. By
seamlessly combining techniques such as differential privacy, private MCMC sampling, and meta-
learning, iFTM significantly alleviates the problem of data scarcity while providing a principled
approach for protecting data privacy.With the federated architecture in iFTM, amaster and a series
of parties work collectively to train high-quality topic models with low communication cost. Our
quantitative experiments show that iFTM is significantly promising, as high-quality topic models
can be trained in federated settings. Empirical evaluation of iFTM on automatic speech recognition
and document classification shows that it truly solves some real-life problems that have not been
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successfully handled before. Future work involves implementing more topic models based upon
iFTM.
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